Summer Math Packet to Prepare for Plane Geometry and Plane Geometry/Trigonometry

SHOW ALL WORK. Identify final answers clearly.

PART 1: Linear Equations and Inequalities 1 - 10: Solve the equation 1. 2(x - 5) = 14

6.
$$\frac{x+1}{5} = \frac{4x}{15}$$

2. 4.2x + 6.4 = 40

7.
$$\frac{8+x}{2} = 10$$

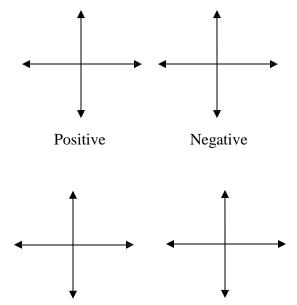
3. (3x+2) - 2(x+4) = 7

8. x+2x+(2x+15)=180

4.
$$\frac{2}{3}x + 5 = 21$$

5.
$$\frac{2}{3} = \frac{x}{18}$$

9 – 11: Solve the inequalities


9. $8(x-3) \ge 96$

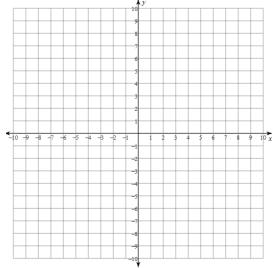
10. 3 - x < -2

11. $2 - 10x \ge 22$

PART 2: Graphing Linear Equations

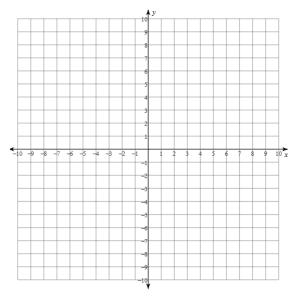
12. Sketch a line with the appropriate slope.

Undefined

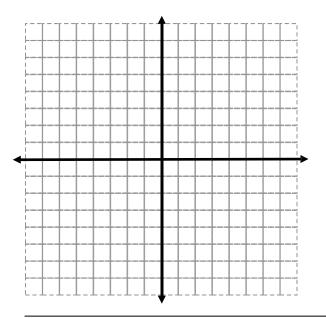

Zero

13 – 14: <u>Plot</u> and <u>label</u> the points. <u>Draw</u> the line that passes between them. <u>Calculate</u> the slope using the slope formula.

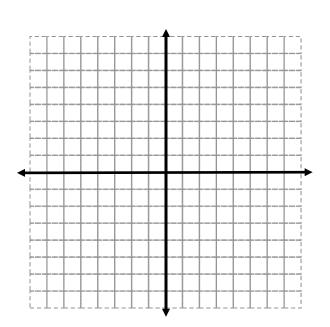
The slope of the line between $A(x_1, y_1)$ and


$$B(x_2, y_2)$$
 is: $m = \frac{y_2 - y_1}{x_2 - x_1}$

13. A(0,3) and B(6,1)

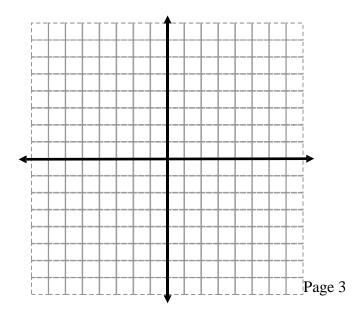

14. A(3, 2) and B(-1, -6) ; draw AB. C(-4, -2) D(-5, -4) ; draw CD

Calculate the slopes and explain if the lines are parallel or not.



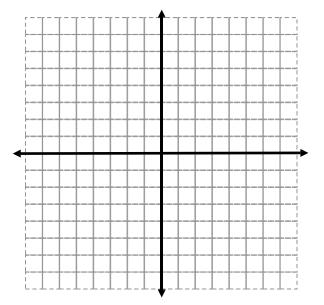
15 – 16: Rewrite each equation in slopeintercept form, y = mx + b. Identify the slope, m, and the y-intercept, b. Then graph.

15.
$$x + y = 6$$



16.
$$2x - 6y = 12$$

17. Graph both equations. Identify the point of intersection


4x + 2y = 14 -4x + 3y = -9

18: Find the x and y intercepts of the equation. Plot the intercepts and graph the line.

Remember: to find the x intercept, let y = 0to find the y intercept, let x = 0

18. 6x - 3y = 12

19 – 23: Write the equation of the line in slopeintercept form using the given information

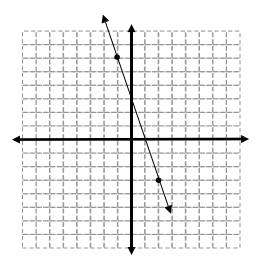
Follow these steps: 1: identify the slope (if necessary- use the slope formula)

2: identify the y intercept (if necessary- substitute the slope and the coordinates of one of the points into y = mx + b. solve for b)

3: use the results of the first two steps to write the equation

19. slope =
$$\frac{3}{4}$$
; y intercept is (0, -5)

20. slope = -3; passes through (4, -3)


21. slope =
$$\frac{2}{3}$$
; passes through (-3, 5)

22. passes through (2, -3) and (5, -9)

PART 3: Linear Systems 25 – 27: Solve each system of equations using the method of your choice (substitution or elimination)

25.
$$x + y = 12$$

 $x - y = 2$

24. Write the equation of the line in the graph

$$26. \quad \begin{array}{c} 2x + y = 5\\ 2x = 14 \end{array}$$

27.
$$4x + 3y = 13$$
$$y = -x + 4$$

PART 4: Quadratic Equations, Polynomials, and Radicals

28 – 31: Simplify the expressions.

28. $(x+11)^2$

34 – 37: Solve by factoring Example: $x^2 + 5x = -6$ original equation $x^2 + 5x + 6 = 0$ put in standard form (x+3)(x+2) = 0 factor x+3 = 0 or x+2 = 0 zero product property x = -3 or x = -2 two solutions

34. $x^2 + 6x + 8 = 0$

29. $(3x-4)^2$

35. $x^2 + 5x + 6 = -x^2 - 3x$

30. 5x(2x-4y+9)

31. $-3x(x^2+2x-7)$ **36.** $3x^2+7x-8=-10$

32 – 33: Solve the equation by taking the square root of both sides (there are two solutions!)

32. $2x^2 = 50$

37. $2x^2 - 4x + 2 = 0$

33. $5^2 + b^2 = 13^2$

38 - 39: Solve by using the quadratic formula:

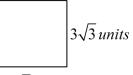
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

38.
$$x^2 - 3x + 1 = 0$$

42. $(4\sqrt{3})^2$ ^

43. $(5\sqrt{6})(3\sqrt{3})$

44 – 53: Simplify by rationalizing the denominator Example:


$$\frac{15}{\sqrt{5}} = \frac{15}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{15\sqrt{5}}{5} = 3\sqrt{5}$$

44. $\frac{15}{\sqrt{3}}$

45. $\frac{40}{\sqrt{2}}$

46. Find the area and Perimeter of a square with a side length of 9 mm.

47. Find the area of the rectangle

 $4\sqrt{3}$ units

Page 7

39.
$$5x^2 + 2x - 2 = 0$$

40 – 43: Simplify the radical expression (Do not estimate with a calculator) Example: $\sqrt{24} = \sqrt{4} \times \sqrt{6} = 2\sqrt{6}$

40. $\sqrt{32}$

41. $2\sqrt{75}$